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Can mobile data reveal social atmospheres?
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Queen Elizabeth Olympic Park (QEOP) 
Stratford, East London



4

Queen Elizabeth Olympic Park (QEOP) 
Stratford, East London



Temporal
Dynamics

Situated
Actions

Spatial 
Baseline

Defining location-based contexts
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Affordances that create the 
potential for interaction

Cyclic changes due to climate, 
culture and circadian rhythmsRe
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Richardson, S. (2020). Modelling Socio-Spatial Dynamics from Real-Time Data. University College London.

Temporary adaptions due to 
abnormal conditions
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Richardson, S. (2020). Modelling Socio-Spatial Dynamics from Real-Time Data. University College London.

P = f(S, T, A, R) P = population behaviour
S = static spatial baseline
T = cyclic dynamic
A = acyclic adaption
R = reaction uncertainty



Estimating the active population…
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Residential
(2011 census)
0

Ambient average
(2015 LandScan)
Approx. 6,000

Contextual 
knowledge
Up to 80,000+

How many 
people present?

Regular Tourist

Richardson, S. (2019). Predicting Presence in Urban Outdoor Spaces, IEEE Pervasive Computing, vol 8(3), pp21-30



Estimating the active population…
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Estimate1 Regulars  vs  Tourists

Ambient average

Friday normal at 6pm

Friday event at 6pm 55,100

9,900

5,907

4%

40%

96%

60%

(1.00)

(weight)

(1.67)

(9.33)

Friday normal at 10am 1,700 33% 67%(0.28)

S

T1

T2

A

Context

Population estimate = Spatial baseline x Time weight
- Spatial baseline: LandScan ambient average
- Time weight created from mobile app data

1 Excluding LandScan ambient average, estimates have been rounded to nearest 100



Learning dwell and movement patterns
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Cluster analysis to 
segment landscape 
into active spaces

Behaviour classified 
based on duration 
in active space

Travelling (< 5 mins)
Brief (5 to 20 mins)
Dwell (20 to 90 mins)
Visit half (90 to 4hrs)
Visit long (4 to 6 hrs)
All day (6+ hrs)

Raw data Classified data

London 
Stadium

London 
Stadium

Westfield
Stratford

Westfield
Stratford

Richardson, S. (2020). Modelling Socio-Spatial Dynamics from Real-Time Data. University College London.



Limitations of mobile data analytics
• How to respect privacy and gain insights into behaviour?
• Is the data representative of the local/visiting population?
• Are all areas accessible for mobile data collection?
• Sensor-based sources:
• Is the placement of sensors biased?

•What behaviours and experiences cannot be captured?
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Summary

• Spatial analysis produces generalised insights
• Space-Time analysis can produce contextual insights
• A framework enables focus on questions rather than data
• Administrative and land-use methods provide static baselines
• Sensed/Mobile data reveal dynamic presence and experiences
• Consideration is needed for bias, privacy and ethics
• Always think about what data is missing…
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Thanks for listening!
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Learning seasonal and situational influences
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Devices connecting 
to park WiFi daily 
during 2017
(and month average)

Richardson, S. (2019). Predicting Presence in Urban Outdoor Spaces, IEEE Pervasive Computing, vol 8(3), pp21-30

Categorising daily 
visits by context 
(min – mean – max)

57,000 seats
52,000 season 
ticket holders


